Meat and poultry nitrogen factors

Analytical Methods Committee AMCTB No 63

The determination of nitrogen as a quantitative marker for meat fatfree protein and the calculation of meat content of compound foods began almost 100 years ago. It is the established official chemical method to enforce labelling declarations of meat content in food products, and also widely used by food producers to check the specification and added water of their meat raw materials. A "nitrogen factor" is the average nitrogen content of a specific cut or whole animal on a fat free basis. The AMC has been overseeing studies to determine nitrogen factors since the 1950's, and more recent government funded studies have been made to accommodate changing rearing regimes and the genetics of the animals.

Introduction

Labelling rules¹ require that, for meat products, the species of meat used should be declared. Where ingredients are highlighted in the name of the food, the amount of that ingredient must be declared as a percentage of the final product (QUID – quantitative ingredient declaration). Products that look like a cut or piece of meat, but that have more than 5% added water, have to declare added water in the product's name as well as meat content. In addition, certain meat product names such as 'sausage', 'burger' and 'pie' are linked to minimum meat contents.² Although the amount of an ingredient is calculated on a recipe basis, enforcement authorities usually check the declared meat content by analysis of the finished product. The analysis determines the nitrogen content (mainly on a fat free basis) of a meat or poultry ingredient, and converts this to a meat or poultry content using a previously-determined nitrogen factor. Added water of a meat/poultry ingredient can be calculated

by the difference. This approach to measuring meat content is almost 100 years old.³ Meat product manufacturers also use nitrogen factors to check the specification of their raw materials, especially the amount of added water.

Meat animals are normally slaughtered and prepared without the use of water. However, poultry is killed and prepared by using some wet processes (de-feathering, rinsing after evisceration, cooling). The European Poultrymeat Marketing Standards Regulation (EC) 543/2008 (ref. 4) regulates the amount of extraneous water poultry and poultry parts are allowed to pick up during preparation in poultry plants without any declaration on the product label. This extraneous water has to be taken into account when poultry contents of preparations and products are determined.

Measurement of the fat-free nitrogen content of meat products is carried out according to internationally accepted methods.⁵ Most laboratories in the UK use the rapid Dumas method for nitrogen determination. This measures the non-protein nitrogen as well as the protein nitrogen, and hence gives higher results than the Kjeldahl method. However, for meat the difference is so small that it can be neglected. Determination of meat or poultry content requires the fat content to be measured, and the full determination also involves the measurement of ash and moisture.

Nitrogen factors for meat and poultry

An extensive study using 60 carcases from four commercial abattoirs was published in 1991.¹⁰

other chicken, and analysed. Nitrogen factors of 3.50 for the skin-on carcase and 3.55 for the skinless carcase were recommended when the cut is not specified. When the cut is known the nitrogen factors in Table 5 can be used. Since 90% of the chicken used in manufactured foods is derived from broilers, when the type of chicken is not specified, the value for broilers is recommended. The most utilised part in products and catering is skinless chicken breast, and as rearing times had been reduced by around 15% by 2013, the factor for skinless chicken breast was re-examined by using 144 samples from the UK, Poland and the Netherlands. A factor of 2.75 (reduced from 2.85) was found. Meat from spent hens is no longer being used in poultry products.

A total of 120 turkeys, consisting of small and medium female, and medium and large male birds from UK producers, were dissected into three main joints – breast, drumstick and thigh. A factor of 3.65 was found for the whole carcase. Where there is information on the joints used as turkey ingredients, the nitrogen factors can be found in Table 6.

References

- 1 Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011on the provision of food information to consumers, OJ L304, 22 November 2011, pp. 18–63.
- 2 Meat Products (England) Regulations 2003 (SI 2003 No. 2075), ISBN 0 11 047359 0.

- 3 G. Stubbs and A. More, A , 1919, 44, 125.
- 4 Commission Regulation (EC) No 543/2008 of 16 June 2008 laying down detailed rules for the application of Council Regulation (EC) No 1234/2007 as regards the marketing standards for poultrymeat, OJ L157, 17 June 2008, pp. 46–87.
- 5 British Standard, BS 4401:1980 ISO 937:1978,

- 6 M. Thompson, L. Owen, K. Wilkinson, R. Wood and A. Damant, A Comparison of the Kjeldahl and Dumas Methods for the Determination of Protein in Foods, using Data from a Proficiency Testing Scheme, *A*, 2002, 12, 1666–1668.
- 7 British Standard BS, BS 4401:1980 ISO 937:1978,

8 British Standard BS, BS 4401:1980 ISO 937:1978,

9 British Standard BS, BS 4401:1980 ISO 937:1978.

- 10 AMC, Nitrogen Factors for Pork: A Reassessment, *A* 1991, 11, 761–766.
- 11 AMC, Nitrogen Factors for Beef: A Reassessment, *A* 1993, 11, 1217–1226.
- 12 AMC, Nitrogen Factors for Sheep Meat. Part 1, Mutton, *A* , 1995, **120**, 1823–1824.
- 13 AMC, Nitrogen Factors for Sheep Meat. Part 2, Lamb Meat, *A*, 1996, 121, 889–896. (Amendment see, *A*, 2000, 125, 227, "on p. 895, Table 10, the value for the SE of forequarter fat-free nitrogen should be 0.020 not 0.220 as printed").
- 14 AMC, Nitrogen Factors for Chicken Meat, *A* , 2000, 125, 1359–1366.
- 15 AMC, Revisiting the Nitrogen Factor for Skinless Chicken Breast, A . , 2014, , 1998–2002.
- 16 AMC, Nitrogen Factors for Turkey Meat, A , 2002, 12 , 859–869.

ft