Uncertainty from Sampling -

Evaluation and use in Validation

Prof Michael H Ramsey

Centre for Environmental Research, School of Life Sciences, University of Sussex, Brighton, UK

Overview

- Objectives
 - + Role of new Eurachem/Eurolab/Citac/Nordtest Guide

Traditional Approach to Sampling Quality

- Sampling traditionally considered separately from measurement.
- Design 'correct' sampling protocol to give a representative sample
- Train sampler to apply the protocol,
- Assume that is applied 'correctly'
 - no quality control of sampling
- Assume that uncertainty of measurement arises only in the lab analysis

US Of Sussex

CER

Sampling as part of the measurement process

- Sampling really the first step in the measurement process
- In situ measurement techniques reveal this
 - Place the sensor \rightarrow make measurement = taking a sample
 - Uncertainty in sampling produces U in measurement
- Physical sample preparation (in field or lab)
 - e.g. filter, acidify, dry, store, sieve, grind, split
 - $\,-\,$ is also part of the measurement process
 - and potentially important source of U
 - include in the validation process

US University

CER

Sampling as part of the measurement process

US University

CER

Sampling as part of the measurement process

- If the objective is to measure the true value
 - of the analyte concentration (or measurand)
 - in the sampling target (e.g. batch of food)
- Sampling is included in measurement process
- U from sampling part of measurement uncertainty*
 - method validation needs to include sampling
- If true value (or measurand) defined solely in terms of laboratory sample
 - sampling is not included
- $\begin{tabular}{ll} \bullet & Most user of analytical measurements assume $x\pm U$ apply to target, not just to lab sample \\ \end{tabular}$
 - * Ramsey MH (2004) Accred Qual Assur., 9, 11-12, 727 728

US University

CER

Methods for estimating uncertainty of measurement (including sampling)

- What are the options?
 - Empirical methods 'Top down' approach
 - based on replicate measurements (within or between organisations)
 - · applicable to any system
 - Modelling methods 'Bottom up' approach
 - based on identifying, estimating and summing all of the components = 'Budget Approach'
 - (Kurfurst *et al*, 2004, Accred Qual Assur., 9, 64-75)
 - sometimes uses Sampling Theory (e.g. Gy's) to estimate components
 - (Minkkinen 2004, Chemometrics and Intelligent Lab. Systems, 74, 85-94)
 - applicable to some particulate systems

US University

CER

Estimation of uncertainty – contributions in the empirical approach

Process	Effect class		
	Random (precision)	Systematic (bias)	
Analysis	e.g. duplicate analyses	e.g. certified reference materials	
Sampling	duplicate samples	Reference Sampling Target, Inter-Organisational Sampling Trial	

US University

CER

Statistical model

for empirical estimation of uncertainty

x = measured value of the analyte concentration in the sampling target

= *true* value of the analyte concentration in the sampling target

'W' Sampling Design for Lettuce

Nitrate conc. in Duplicate Samples

Most analytical duplicates

Validation of whole measurement procedure

Initial validation

- -used when sampling is done as a one-off campaign
 - -(spot sampling, e.g. contaminated site investigation)
- -use initial estimation of U
 - -e.g. using duplicate method requiring ≥32 measurements
- -One target/site validation may need repeating at intervals
 - -i.e. repeated sampling, (e.g. time or flow- proportional sampling of waste water).
- Validation demonstrates what can be achieved and,
 - -if that conforms to fitness-for-purpose requirement,
 - -then procedures deemed suitable for routine use.

US University of Sussex

CER

Relationship between validation and quality contro

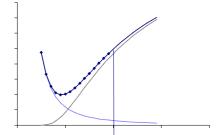
of whole measurement procedure

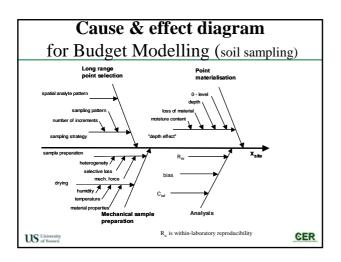
Quality control of sampling (and analysis) SAQC

- to ensure that conditions prevailing at validation
- and therefore the expected uncertainty attached to the results)
- are still applicable every time those sampling/analytical procedures executed.
- i.e. routine measurements are still fit-for-purpose

Differences between sampling and analytical validation/QC

- Some sampling targets (like analysis?) quite consistent between batches (e.g. water in butter) $\,$
- Many targets are very variable between 'batches' (e.g. contaminated land hetero)
- Estimates of U, and FFP criteria (if site specific), may have varied since time of validation
- May need more elaborate SAQC or repeated validation, at each target/batch/site

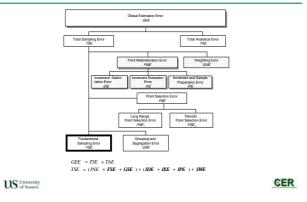

US University


CER

Judging fitness-for-purpose in validation

- How can you judge if you have too much uncertainty?
- One option -use the optimised uncertainty (OU) method*
- Balance the cost of measurement
 - against the cost of making incorrect decisions
- Knowing sampling and analytical components
- judge whether either is not FFP
- therefore where improvements/ increased expenditure required

Acceptable level of Uncertainty?



		Standard	
Effect	Uncert	ainty(%)	
Variation "between locations"	5.4	2.9	
Sampling strategy	1.0	0.5	
Depth	3.5	3.7	
Splitting	3.7	3.3	
Drying	0.6	0.6	
Analysis	5.2	9.7	
Combined Uncertainty	9.1	11.3	

Modelling using Sampling Theory

$$\sigma_r^2 = Cd^3(\frac{1}{M_s} - \frac{1}{M_L})$$

Sampling Theory of Gy

U estimates from Sampling Theory

$$s_{\rm r1}$$
 = 0.033 = 3.3 % Primary sample
$$s_{\rm r2}$$
 = 0.13 = 13 % Secondary sample
$$s_{\rm r3}$$