
Matrix Effects and Uncertainty

Michael Thompson Birkbeck College (University of London) m.thompson@bbk.ac.uk

A framework for further study

Methods of reducing matrix effects

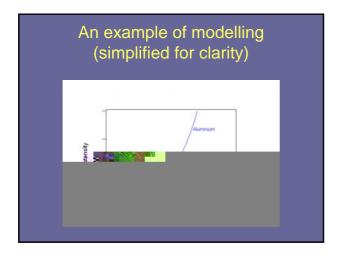
- Matrix is effectively constant among test materials of the defined class.
 - -Matrix matching
- 2. Matrix varies to a consequential degree between test materials of the defined class.

 -Matrix modification
 -Modelling
 -Internal calibration

Method Validation Seminar June 06

2

Uncertainty estimation after matrix correction


• **Systematic methods**Derive the uncertainty estimate directly from the calibration model.

• Random variations

• Worst case scenarios

Study an example with extreme deviation of the matrix from the calibrators.

Modelling

-	

3 Method Validation Seminar June 06

Calibration and uncertainty models

• (S) = (Mo) + k*(AI)

where (Mo), (Al) are the concentrations of molybdenum and aluminium, k is a calibration factor and (S) is the total signal.

• (Mo) = (S) - k(AI)

$$u^2(Mo) = u^2(S) + k^2 * u^2(AI)$$

(assuming that k is invariate).

Uncertainty terms

- $u^2(S) = v^2(Mo) + w^2(Mo)^*(S)^2$
- $U^{2}(AI) = V^{2}(AI) + w^{2}(AI)^{*}(AI)^{2}$

where v(.) is a constant uncertainty related to the detection limit and w(.) provides an uncertainty proportional to the concentration.

Effect of correction on uncertainty

True molybdenum concentration (Mo) = 5 ppm

(AI)25.04403 rened Tcেটান্দেশ্লান্স.62 ০৩১জে62int9610/10.2 0 3.4885 10.2 165.36 421.6403 Tm-00 n(T310.2 0 3.4885 10.110.2 0 3.4885

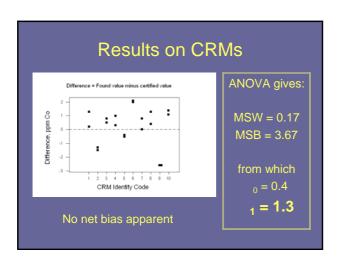
signal (ppm Mo)	uncòrrected signal (ppm)	corrected concentration (ppm)
5.0	1.0	10.1
10.0	1.1	10.1
25.0	1.3	10.1
	(ppm Mo) 5.0 10.0	(ppm Mo) signal (ppm) 5.0 1.0 10.0 1.1

Method Validation Seminar June 06

Method Validation Seminar June 06 5

Random studies

Random studies


This method is appropriate where the causes of the matrix effects are obscure or too complex to model.

- Take a number of representative test materials.
- Measure the apparent concentrations of the analyte (in duplicate).
- Calculate the differences (found minus expected).
- Calculate the between matrix standard deviation by analysis of variance.

Analytical "health-warnings"

• Reference materials (i.e., with known true values) are best for this application, but the uncertainties on the reference values are often

Example: 10 Geological CRMs: Analyte is Co					
ID Code	Certified value	Result 1	Result 2	Difference 1	Difference 2
1	10,2	11,5	10,4	1,3	0,2
2	12,9	11,4	11,6	-1,5	-1,3
3	9,8	10,3	10,6	0,5	0,8
4	6,7	7,7	7	1	0,3
5	7,5	7	7,1	-0,5	-0,4
6	6,4	8,5	8,4	2,1	2
7	11,1	11,1	11,9	0	0,8
8	10,1	11,4	10,5	1,3	0,4
9	7,2	4,6	4,6	-2,6	-2,6
10	11,4	12,8	12,5	1,4	1,1

"Worst Case" Scenario

Method Validation Seminar June 06

7

"Worst Case" Scenario

- 1. Select a material likely to produce an extreme matrix effect, and estimate its effect.
- 2. This effect can be regarded as the extreme of a range width 2*A*. The associated standard uncertainty is *A*/3.
- 3. This is a crude expedient, but it is sometimes has the useful outcome of eliminating a suspected matrix effect from further consideration.

More Health Warnings

- Uncertainty is very variable it has large relative uncertainty when estimated from few (>20) results. It is seldom useful to report an uncertainty to better than one significant figure.
- Uncertainty is heteroscedastic you may need to take this into account if the expected concentration range is large. This would require a <u>large</u> experiment.

and finally....

 Matrix effects come in two main forms – translational and rotational, and mixtures of the two. Failure to distinguish between them may give rise to misleading results. Many methods of treating rotational effects (<i>e.g.</i>, 	
standard additions) rely for their effectiveness on the prior treatment of translational effects (<i>e.g.</i> , by background correction).	

Method Validation Seminar June 06

8